Global Aerospace Service Robotics Market Research Report – Segmented by Robot Type (Articulated, Linear, Parallel, SCARA, and Others); By Application (Maintenance and Inspection, Cargo Handling, Space Exploration, Crew Assistance, and Others); By Components (Hardware, Software); By End-User (Commercial Aviation, Military Aviation, Space Exploration); and Region - Size, Share, Growth Analysis | Forecast (2024 – 2030)

Chapter 1. Aerospace Service Robotics Market  – Scope & Methodology
1.1    Market Segmentation
1.2    Assumptions
1.3    Research Methodology
1.4    Primary Sources
1.5    Secondary Sources
Chapter 2. Aerospace Service Robotics Market  – Executive Summary
2.1    Market Size & Forecast – (2024 – 2030) ($M/$Bn)
2.2    Key Trends & Insights
2.3    COVID-19 Impact Analysis
              2.3.1    Impact during 2024 – 2030
              2.3.2    Impact on Supply – Demand
Chapter 3. Aerospace Service Robotics Market  – Competition Scenario
3.1    Market Share Analysis
3.2    Product Benchmarking
3.3    Competitive Strategy & Development Scenario
3.4    Competitive Pricing Analysis
3.5    Supplier - Distributor Analysis
Chapter 4. Aerospace Service Robotics Market  - Entry Scenario
4.1     Case Studies – Start-up/Thriving Companies
4.2     Regulatory Scenario - By Region
4.3    Customer Analysis
4.4     Porter's Five Force Model
              4.4.1     Bargaining Power of Suppliers
              4.4.2     Bargaining Powers of Customers
              4.4.3    Threat of New Entrants
              4.4.4    .Rivalry among Existing Players
              4.4.5    Threat of Substitutes
Chapter 5. Aerospace Service Robotics Market  - Landscape
5.1     Value Chain Analysis – Key Stakeholders Impact Analysis
5.2    Market Drivers
5.3    Market Restraints/Challenges
5.4    Market Opportunities 
Chapter 6. Aerospace Service Robotics Market  - By Robot Type
6.1    Articulated
6.2    Linear
6.3    Parallel
6.4    SCARA
6.5    Others
Chapter 7. Aerospace Service Robotics Market  - By Application
7.1    Maintenance and Inspection
7.2    Cargo Handling
7.3    Space Exploration
7.4    Crew Assistance
7.5    Others
Chapter 8. Aerospace Service Robotics Market  - By Component
8.1    Hardware
              8.1.1    Arms and Manipulators
              8.1.2    Sensors
              8.1.3    Actuators
              8.1.4    Power System
8.2    Software
              8.2.1    Control Software
              8.2.2    AI & ML
Chapter 9. Aerospace Service Robotics Market  - By End-User
9.1     Commercial Aviation
9.2    Military Aviation
9.3    Space Exploration
Chapter 10. Aerospace Service Robotics Market  – By Region
10.1    North America
10.2    Europe
10.3    Asia-Pacific
10.4    Latin America
10.5    The Middle East
10.6    Africa
Chapter 11. Aerospace Service Robotics Market  – Key Players
11.1    ABB Group
11.2     Fanuc Corporation
11.3    Oliver Crispin Robotics
11.4    Kawasaki Heavy Industries, Ltd.
11.5    Electroimpact Inc.

Download Sample

The field with (*) is required.

Choose License Type

$

2850

$

5250

$

4500

$

1800

Frequently Asked Questions

Global Aerospace Service Robotics Market is estimated to be worth USD 6.76 Billion in 2023 and is projected to reach a value of USD 24.95 Billion by 2030, growing at a substantial CAGR of 20.51% during the forecast period 2024-2030.

Aerospace service robotics are advanced automation solutions used in the aerospace industry for various tasks, such as aircraft maintenance, inspections, cargo handling, and space exploration.

Using aerospace service robotics offers several advantages, including enhanced operational efficiency, reduced downtime, improved safety, and lower operational costs for aerospace companies. These robots can perform complex tasks, adapt to challenging environments, and complement human efforts, thereby reshaping the aerospace landscape.

Yes, aerospace service robotics play a crucial role in space exploration missions by supporting tasks such as satellite deployment, planetary exploration, and maintenance of space stations. These robots are equipped with advanced sensors, AI capabilities, and autonomous navigation for space applications.

Challenges in adopting aerospace service robotics include high initial investment costs, stringent regulatory and safety compliance requirements, and integration complexities with existing aerospace infrastructure. Manufacturers and providers of aerospace service robotics must address these challenges to promote widespread adoption.